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Abstract

The paper examines the in!plane loading of a disc shaped rigid disc inclusion which is embedded in bonded
contact with the plane surfaces of a penny!shaped crack[ The mixed boundary value problem governing the
elastostatic problem is reduced to the solution of a system of coupled integral equations\ which are solved
numerically to determine results of engineering interest[ These results include the in!plane sti}ness of the
disc inclusion and the crack opening mode stress intensity factor at the boundary of the penny!shaped crack[
Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The disc inclusion problem in the classical theory of elasticity is a particular simpli_cation of
the general category of three!dimensional inhomogeneities[ When the physical con_guration of
the inhomogeneity allows its modelling as a disc inclusion\ the analysis of the inclusion problem
can be considerably simpli_ed[ Attention can be focused on the analysis of a variety of inclusion
problems which are essentially mixed boundary value problems related to an elastic halfspace
region[ Elastostatic problems associated with disc inclusions have been successfully applied to
examine a variety of problems of interest to the mechanics of multiphase composite materials and
geomechanics[ The investigations by Collins "0851#\ Keer "0854# and Kassir and Sih "0857# are
the pioneering works in this area[ Since these original developments\ the theory of a disc inclusion
has been applied to a variety of situations involving anchor!type objects used in geomechanical
applications[ These studies have taken into consideration non!classical e}ects such as material
anisotropy\ in~uence of bi!material regions\ ~exibility of the inclusion\ delaminations and cracking
both within and exterior to the inclusion region and the interaction between the inclusion and
externally placed loads[ Accounts of these developments are given by Mura "0870\ 0877#\ and in
the recent articles by Selvadurai et al[ "0889#\ and Selvadurai "0883a\ b#[
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Fig[ 0[ In!plane translation of a rigid disc inclusion embedded in a penny!shaped crack[

In this paper we examine the problem related to a disc!shaped rigid circular inclusion which is
embedded at the centre of a penny!shaped crack[ The problem may be visualized either as a
situation where fracturing has extended beyond the boundary of a rigid disc inclusion or where an
inclusion region is created by the injection of a cementitious material into a geological medium by
hydraulic facturing "Fig[ 0#[ The disc inclusion embedded in a crack is\ therefore\ an approximate
analogue of the anchor region[ In general the rigid anchor region can be subjected to various
modes of deformation[ The axial loading of a rigid disc anchor embedded in complete bonded
contact with the faces of the penny!shaped crack was examined by Selvadurai "0878#[ This result
was extended by Selvadurai "0883b# to examine the case when the axial loading in the presence of
delamination at one face of the inclusion[

In this study we extend the work to include the in!plane loading of the rigid circular disc inclusion
for the particular case when the inclusion is in bonded contact with the faces of the penny!shaped
crack[ The in!plane loading of the inclusion is more consistent with situations where the anchorage
is formed at orientations normal to a direction of minimum principal stress exerted\ for example\
by self weight stresses[ Also\ the problem examined considers the case where the rigid disc anchor
or inclusion is located\ in bonded contact\ at the centre of the penny!shaped crack[ Such positioning
is expected to produce an anchorage of highest compliance\ which is important to the assessment
of the elastostatic e.ciency of the anchorage[ The mixed boundary value problem resulting from
the anchor "inclusion#Ðcrack interaction problem is reduced to the solution of a set of coupled
integral equations which are solved in a numerical fashion[ Numerical results are presented for the
in!plane sti}ness of the inclusion and for the crack opening mode stress intensity factor at the
boundary of the penny!shaped crack[
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1[ Governing equations

The associated asymmetric elastostatic boundary value problem can be formulated by employing
the stress function techniques developed by Muki "0859#[ The stress functions are governed by the
di}erential equations

9191F"r\ u\ z# � 9 "0a#

91C"r\ u\ z# � 9 "0b#

where

91 �
11
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¦
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"1#

is Laplace|s operator referred to the cylindrical polar coordinate system[ The displacement and
stress components in the elastic medium can be expressed in terms of the functions F"r\ u\ z# and
C"r\ u\ z#[ Considering a Hankel transform development of the governing equations we can show
that the relevant solutions applicable to the region 9 ¾ z ³ � take the forms

F"r\ u\ z# � cos u g
�

9

jðA"j#¦zB"j#Ł e−jzJ0"jr# dj "2#

C"r\ u\ z# � sin u g
�

9

jC"j# e−jzJ0"jr# dj "3#

where A"j#\ B"j# and C"j# are arbitrary functions[ The displacement and stress components
relevant to the formulation of the boundary value problem can be obtained\ from "2# and "3#\ in
the forms
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and
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sin u

r $g
�

9

j"j1A"j#¦B"j#"j1z−1nj## e−jzJ0"jr# dj

¦g
�

9

j1C"j#"jrJ9"jr#−J0"jr## e−jz dj% "8#

srz"r\ u\ z# �
cos u

r $g
�

9

j"−j1A"j#¦"1nj−j1z#B"j##"jrJ9"jr#−J0"jr## e−jz dj

−g
�

9

j1C"j#J0"jr# e−jz dj% "09#

where G is the linear elastic shear modulus and n is Poisson|s ratio[

2[ The disc inclusion problem

We consider the problem of a rigid circular disc inclusion of radius {a| which is embedded in
bonded contact with the surfaces of a penny!shaped crack of radius {b|[ The inclusion is subjected
to an in!plane force of magnitude T which induces a rigid body displacement {d| in the plane of
the inclusion[ The problem exhibits symmetry about the plane z � 9[ Consequently\ the problem
can be formulated as a mixed boundary value problem related to a halfspace region 9 ¾ z ³ �[
The mixed boundary conditions applicable to the crackÐinclusion interaction problem are as
follows ^ with displacement boundary conditions

ur"r\ u\ 9# � d cos u ^ 9 ¾ r ¾ a "00#

uu"r\ u\ 9# � −d sin u ^ 9 ¾ r ¾ a "01#

uz"r\ u\ 9# � 9 ^ 9 ¾ r ¾ a ^ b ¾ r ³ � "02#

and traction boundary conditions

srz"r\ u\ 9# sin u¦suz"r\ u\ 9# cos u � 9 ^ a ³ r ³ � "03#

srz"r\ u\ 9# cos u−suz"r\ u\ 9# sin u � 9 ^ a ³ r ³ � "04#

szz"r\ u\ 9# � 9 ^ a ³ r ³ b "05#

Using the integral representations "4#Ð"09# for the displacement and stress components\ the bound!
ary conditions "00#Ð"05# can be e}ectively reduced to the following system of integral equations ]
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"0−1n#% J0"jr# � 9 ^ a ³ r ³ b "12#

where the functions L"j#\ M"j# and N"j# are related to the functions A"j#\ B"j# and C"j# according
to

1j2"0−n#A"j# � 1nN"j#¦"0−1n#"L"j#¦M"j## "13#

3j1"0−n#B"j# � 1N"j#−L"j#−M"j# "14#

1j1C"j# � L"j#−M"j# "15#

Considering the integral equations "06#Ð"12# we introduce the following representations

L"j# � g
a

9

80"t# cos"jt# dt �
80"a# sin"ja#

j
−

0
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a

9

8?"t# sin"jt# dt "16#

M"j# � g
a

9

t81"t#J1"jt# dt "17#

with 80"9# � 9 and the prime denotes the derivative of the function with respect to t[ Substituting
"16# and "17# into "10# and "11# we _nd that both equations are identically satis_ed[ Substituting
"16# into "06# we obtain
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which is an integral equation of the Abel type\ the solution of which is given by

80"t# �
21Gd"0−n#
"6−7n#p

¦
1

p"6−7n# g
�

9

ðM"j#¦1"0−1n#N"j#Ł cos"jt# dj ^ 9 ³ t ³ a "29#

The eqn "12# can be written in the form
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We assume that "20# admits a representation
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f0"r# ^ 9 ³ r ³ a

f1"r# ^ a ³ r ³ b
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With the help of Hankel transforms\ we obtain from "20# and "21#
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Substituting the value of N"j# de_ned by "22# into eqns "08# and "19# we _nd that
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and the limits of integration in "24# can occupy the ranges "9\ a#\ "a\ b# and "b\ �# depending upon
the value of j[

From the results given by Cooke "0852# we note that
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Using these results the eqn "23a# can be written as
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The solution of the Abel integral eqn "28# is given by
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Again\ the solution of the Abel integral eqn "33# is given by
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Also considering "16#\ "17#\ "20# and "21# we can show that
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where H"x# is the Heaviside unit function[ Substituting the value of M"j# from "17# into "07# we
obtain
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Also\ introducing the substitution

P"s# � g
a

s

81"t# dt

t"t1−s1#0:1
^ 9 ³ s ³ a "49#

and using the representations for L"j# and N"j# it can be shown that
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Finally\ the eqn "36# can be reduced to the form

80"t# �
21Gd"0−n#

"6−7n#p1
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Considering "12# and "21# we have

f1"r# � −
"0−1n#

1 g
�

9

jðL"j#¦M"j#ŁJ0"jr# dj ^ a ³ r ³ b "42#

Using the values for L"j# and M"j#\ de_ned by "16# and "17#\ in "42# we obtain

f1"r# �
"0−1n#

1 $
1
pr g

a

9

81"t#
t

dt g
t

9

s3 ds

"t1−s1#0:1"r1−s1#2:1
¦r g

a

9

80"t# dt

"r1−t1#2:1% ^ a ³ r ³ b "43#

Re!ordering the double integral in "43# and using the result "49# we can write "43# as

f1"r# �
"0−1n#

pr g
a

9

s3P"s# ds

"r1−s1#2:1
−

"0−1n#r
1 g

a

9

80"t# dt

"r1−t1#2:1
^ a ³ r ³ b "44#

The mixed boundary value problem related to the embedded disc inclusion problem de_ned by
eqns "00#Ð"05# is now reduced to the solution of the coupled integral eqns "32#\ "35#\ "40#\ "41#
and "44# for the unknown functions F0"s#\ F2"s#\ f1"r#\ P"s# and 80"t#[ The structure of these coupled
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integral equations is such that results of practical interest can be obtained only upon numerical
solution of these equations[

3[ LoadÐdisplacement behaviour of the disc inclusion

The shear stress distribution at the disc inclusionÐelastic medium interfaces can be used to
evaluate the in!plane loadÐdisplacement relationship for the rigid disc inclusion[ The shear traction
on the plane z � 9 in the x!direction is given by

Tx �"srz cos u−suz sin u# � −
0
1 g

�

9

jL"j#J9"jr# dj ^ 9 ³ r ³ a "45#

The resultant force T required to induce the in!plane displacement d is given by

T � −1p g
a

9

r dr g
�

9

jL"j#J9"jr# dj "46#

Since

g
�

9

j"L#"j#J9"jr# dj �
80"a#

za1−r1
−g

a

r

8?0"t# dt

zt1−r1
"47#

where the prime indicates the derivative with respect to t\ "46# can be reduced to the result

T � −1p g
a

9

80"t# dt "48#

4[ Stress intensity factor at the crack tip

Since the state of deformation induced in the elastic medium as a result of the displacement of
the inclusion is symmetric about the plane z � 9\ the mode II and mode III stress intensity factors
at the boundary of the crack are identically zero[ The non!zero mode I stress intensity factor at
the boundary of the crack can be obtained by considering the axial stress szz"r\ 9# in the region
r × b[ Using the result "7#\ the substitutions "13#\ "14#\ "17# and the expressions "16#\ "22# and "26#
we obtain

3"0−n#
"0−1n#

szz"r\ 9\ 9# �
a80"a#

rzr1−a1
−

0
r g

a

9

8?0"t# dt

"r1−t1#0:1

¦
3

pr"0−1n# g
r

b

F2"s# ds

s"r1−s1#0:1
¦

1
"0−1n# $

1rF2"b#

pb1zr1−b1
¦

1r
p g

r

b 0
F2"s#

s1 1
? ds

"r1−s1#%
−

1
pr g

a

9

81"t# dt
t g

t

9

s3 ds

ð"t1−s1#0:1"r1−s1#2:1Ł
^ r × b "59#
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where the prime denotes the derivative with respect to the appropriate argument[ The stress
intensity factor at r � b is de_ned by

Kb
I � lim

r:b¦
ð1"r−b#Ł0:1szz"r\ 9\ 9# "50#

Using the result "59# in "50# we have

Kb
I �

0
p"0−n#

F2"b#

b2:1
"51#

It is noted that the mode I stress intensity factor given by "51# is evaluated only at the location
u � 9[ From "7# it is evident that szz has a variation in u which is proportional to cos u and we
further assume that the de_nition of the stress intensity factor is valid for uo"p:1\ 2p:1#[

5[ Numerical results

We adopt a numerical technique for the solution of the coupled system of integral eqns "32#\
"35#\ "40#\ "41# and "44# for the unknown functions F0"s#\ F2"s#\ f1"r#\ P"s# and 80"t#[ The general
procedures for the solution of this class of integral equations are given by Baker "0867# and further
applications are also given by Selvadurai "0882\ 0883a\ b# and Selvadurai et al[ "0889\ 0880#[ The
intervals involved are "9\ aŁ\ ða\ bŁ and "b\ �Ł[ If N0\ N1 and N2 segments are considered\ then we
can de_ne the locations\ given by\

xi �"i−0#h0 with i � 0\ 1\ [ [ [ \ N0¦0 "52#

yi � a¦"i−0#h1 with i � 0\ 1\ [ [ [ \ N1¦0 "53#

and

zi � zi−0¦a"zi−0−zi−1# with i � 2\ 3\ [ [ [ \ N2¦0 "54#

where h0 � a:N0\ h1 �"b−a#:N1 ^ z0 � b ^ z1 � b¦h1 and a is a constant of proportionality such
that the interval "b\ �Ł is approximated in the numerical scheme[ Using the above discretization\
the governing integral equations can be written in the form of a matrix equation

ðAijŁ"Xj# � "Fi# "55#

where i\ j � 0\ 1\ [ [ [ \ N and N � 2N0¦N1¦N2[ The matrix ðAijŁ in "55# are the kernel coe.cients
in the _ve integral equations and "Xj# are the values of the unknown functions at the collocation
points[ The right!hand side of "55# is given as

"Fi# � 6
0 if i � N0¦0\ [ [ [ \ 1N0

9 for all other i
"56#

The resultant force on the inclusion can be determined from the function 80"t# in "41# and the
result "48#[ We have
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T
53"0−n#GDa:"6−7n#

� −
0

N0

s
1N0

j�N0¦0

Xj "57#

The stress intensity factor de_ned by "51# and applicable to 9 ³ u ³ 1p\ can be expressed in the
form

Kb
I �

21GD cos u

"6−7n#p1b2:1
XN−N2¦0 "58#

This result can be normalized with respect to either the stress intensity factor at the boundary of
a penny!shaped crack subjected to in!plane point loads of equal magnitude T:1 acting in the x!
direction\ i[e[

ðKb
I Łpoint load �

T"0−1n# cos u

7p"0−n#b2:1
"69#

or with respect to the case when a : b ^ i[e[

ðKb
I Ła:b �

05GDa"0−1n# cos u

"6−7n#p1b2:1
"60#

Figure 1 illustrates the variation in the in!plane sti}ness of the disc inclusion as determined from
the numerical procedure described previously[

In the limit as "a:b# : 9 "with a � 9#\ the problem corresponds to the in!plane loading of a disc
inclusion which is embedded between two!halfspace regions and subjected to an in!plane force T[
The analytical solution to this problem can be obtained from the results developed for the in!plane
translation of a rigid punch bonded to an isotropic elastic halfspace "see e[g[ Gladwell\ 0879# ^ i[e[

T �
05GDa

60¦
"0−1n#

ln"2−3n#7
"61#

The analytical result for the in!plane sti}ness given by "61# exactly matches the numerical result
when n � 0:1 and when n � 9\ the discrepancy between the analytical and numerical solutions is
approximately 9[3)[

Figure 2 illustrates the variation in the crack opening mode stress intensity factor ðnormalized
with respect to the limiting value de_ned by "60#Ł as a function of the inclusion!crack aspect ratio
a:b and Poisson|s ratio[ As the diameter of the inclusion reduces to zero "with T being _nite#\ the
result reduces to the case where the crack is subjected to symmetrically directed forces of equal
magnitude T:1 which act along the x!direction[

6[ Conclusions

The problem related to the in!plane translation of a penny!shaped rigid disc which is embedded
in bonded contact within a penny!shaped crack can be examined by formulating the problem as a
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Fig[ 1[ The in~uence of the inclusion!crack aspect ration "a:b# on the in!plane sti}ness of the disc inclusion

$TÞ�
T"6−7n#

53GDa"0−n#%[

mixed boundary value problem referred to a halfspace region[ It is shown that the mixed boundary
value problem can be reduced to a system of coupled integral equations which can be solved by
using a quadrature scheme\ to develop results of engineering interest[ In the case when the inclusion
is bonded to the surfaces of the crack\ the stress singularity at the boundary of the inclusion will
exhibit an oscillatory form of a stress singularity[ Studies conducted previously in connection with
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Fig[ 2[ The in~uence of the inclusion!crack aspect ration "a:b# on the mode I stress intensity factor at the crack tip r � b

$KÞb
I �

Kb
I "6−7n#p1b2:1

05GDa"0−1n# cos u%[

the axial loading of an inclusion embedded in a crack have shown that such local e}ects have very
little in~uence on the overall responses such as the loadÐdisplacement behaviour of the inclusion[
The stress singularity at the crack tip is regular and the nonzero axial stress can be used to compute
the mode I stress intensity factor[ Furthermore\ the numerical results indicate that the in!plane
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sti}ness of the inclusion is not signi_cantly in~uenced by the extent of cracking in the plane of the
inclusion[ For all practical purposes\ the elastic solution can be conveniently computed by making
use of the exact analytical result for the in!plane translation of a rigid punch which is embedded
in bonded contact between two halfspace regions[
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